














18 mm from the VWFA. However, activation at that location was

slightly negative for all words relative to rest, suggesting that the

cluster arose due to a deactivation for false font strings. A failure

to activate for words relative to rest is inconsistent with the re-

sponse properties of the VWFA. For Patient B, there were no

voxels meeting the voxel-wise criteria in left occipito-temporal

cortex. In right occipito-temporal cortex there were a few scat-

tered voxels meeting the voxel-wise criteria, but none were close

to the right homologue of the VWFA; the closest was located at

(–40, –72, –2), which is 20 mm from the right hemisphere homo-

logue of the VWFA. We then examined the contrast of words

versus false fonts without the mask of words versus rest, and

observed a small cluster of nine voxels with centre of mass

(–50, –43, –10), which is 17 mm from the VWFA. But activation

at that location was slightly negative for all words relative to

rest, inconsistent with the response properties of the VWFA.

In summary, neither patient showed any activation resembling a

typical VWFA, even when the criteria were relaxed.

We next performed a whole-brain random effects analysis con-

trasting words to false font strings in the 10 control subjects. The

VWFA was the only region activated (centre of mass: –43, –50, –18;

extent = 6312 mm3; corrected P50.001) (Fig. 5A). We then

directly compared the two patients to the 10 control subjects. The

patients showed significantly less activation than control subjects

in the VWFA (centre of mass: –39, –45, –19; extent = 1000 mm3;

corrected P = 0.034) (Fig. 5B). This was the largest cluster observed,

and no other clusters reached significance.

To reveal the anticipated posterior–anterior gradient of selectiv-

ity for words, we plotted the signal to false font strings as a pro-

portion of the signal to words, in regions that were active for

words versus fixation (Fig. 6). We found evidence for this gradient

in each of the 10 control subjects (Fig. 6A–J). There was some

individual variability, for instance, Control Subject 4 (who was

left-handed) showed a typical gradient in the left hemisphere,

but an even stronger gradient in the right hemisphere; Control

Subject 5 showed rather weak activity for both conditions relative

to rest; and Control Subject 9 showed an additional word-selective

region more posteriorly. However, despite this variability, left

hemisphere posterior-anterior gradients were evident in all control

subjects.

In contrast, neither of the two patients with progressive alexia

exhibited a posterior-anterior gradient of selectivity for words

(Fig. 6K and L). Both patients had small regions in the right hemi-

sphere that were selective for words at P50.05, but in both cases

these were considerably dorsal to the right hemisphere homologue

of the VWFA (Fig. 6K and L).

We also plotted the mean signal for words and false font strings

in occipito-temporal cortex in each hemisphere as a function of

Figure 3 Structural images of the two progressive alexic

patients. Regions of tissue loss as revealed by voxel-based

morphometry (voxel-wise P50.005, minimum cluster

extent = 1500 mm3) are shown with red outlines (white in

printed version). (A) Patient J showed mild atrophy of the left

posterior inferior temporal gyrus. (B) Patient B showed much

more extensive atrophy of left temporal cortex.

VBM = voxel-based morphometry.

Table 3 Voxel based morphometry showing tissue loss in
the two progressive alexic patients

Brain region MNI coordinates Max t Extent
(mm3)

x y z

Patient J

Left posterior
inferior temporal
gyrus

�56 �55 �16 4.75 1680

Left sylvian fissure
(widening)

�40 2 2 4.72 5880

Patient B

Left inferior and
middle temporal
gyri and fusiform
gyrus

�44 �40 �9 9.67 80032

Right posterior
inferior temporal
gyrus

57 �58 �15 5.20 2368

Thresholded at voxel-wise P50.005, cluster extent41500 mm3. Extent is the
size of the region in which there was significant tissue loss (voxel-wise P5 0.005)
compared with control subjects.
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y coordinate (i.e. posterior-to-anterior) (Fig. 6). This analysis high-

lighted a notable difference between the two patients. Patient

J showed normal responses to both words and false font strings

in posterior occipito-temporal cortex, but unlike control subjects,

he showed no emergence of selectivity for words more anteriorly.

In fact, he showed somewhat less activity for words than false

font strings in the vicinity of the VWFA. In contrast, Patient B

showed minimal activation for either words or false font strings

in any part of occipito-temporal cortex. In this respect, Patient B

differed from Patient J and the control subjects, all of whom

showed robust responses for both words and false font strings

relative to rest.

Figure 4 Functional identification of the visual word form area. (A, B and C) In three typical control subjects, viewing words or false font

strings relative to fixation activated bilateral occipital and posterior temporal regions (voxel-wise P50.0001). The contrast of words

versus false font strings (voxel-wise P50.05) masked by the contrast of words versus rest (voxel-wise P50.0001) revealed the VWFA in

each of the 10 control participants. (D) Patient J showed typical bilateral occipito-temporal activation for words or false font strings relative

to fixation, however there were no regions activated for words versus false font strings. (E) Patient B showed weak right-lateralized

activation for words or false font strings relative to fixation, and no regions activated for words versus false font strings.

Table 4 Localization of VWFA with functional MRI

Subject MNI coordinates of VWFA Distance Max t Extent

x y z (mm) (mm3)

Control 1 �37 �45 �23 15 2.89 928

Control 2 �44 �54 �16 4 5.25 3432

Control 3 �45 �56 �9 6 4.05 2704

Control 4 �35 �45 �20 15 2.90 616

Control 5 �45 �56 �15 3 2.34 96

Control 6 �41 �60 �12 4 3.72 4328

Control 7 �51 �51 �14 11 5.45 3416

Control 8 �42 �52 �13 6 5.99 3184

Control 9 �43 �52 �12 6 6.56 N/A*

Control 10 �43 �52 �14 5 4.63 N/A*

Patient J None

Patient B None

Distance is the distance from the VWFA coordinates of (�42, �57, �15)
reported by Cohen et al. (2002).
*Clusters for these subjects were contiguous with other clusters outside
the VWFA, so cluster extent could not be determined. The t threshold was
raised until the clusters separated to determine the centre of mass of the VWFA

cluster.

Figure 5 The visual word form area in control subjects and

patients. (A) In the control group, the contrast of words versus

false font strings (voxel-wise P50.005, corrected for multiple

comparisons at P50.05) revealed the visual word form area.

(B) Activation for this contrast was reduced in the patients

relative to the control subjects (voxel-wise P50.005, corrected

for multiple comparisons at P5 0.05).
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Discussion
The goal of this study was to investigate the structural and func-

tional status of the visual word form system, including the VWFA,

in two patients with progressive alexia. Structural imaging showed

left-lateralized occipito-temporal atrophy in both patients, mild in

one (Patient J) but moderate to severe in the other (Patient B).

Functional imaging in control subjects revealed a posterior-to-

anterior gradient of selectivity for words, and all 10 showed a

functionally defined VWFA that was activated for words relative

Figure 6 The typical anterior-posterior gradient of selectivity for words in occipito-temporal cortex was abnormal in the two patients with

progressive alexia. (A–J) In all control subjects, posterior occipito-temporal cortex responded as much for false font strings as for words,

whereas more anterior regions showed greater responses to words than false font strings. This pattern was also apparent (arrowheads)

when plotting mean occipito-temporal responses in each hemisphere to words and false font strings as a function of y coordinate, as

shown in the line graphs below each image. (K and L) This selectivity gradient for words was not apparent in either of the two progressive

alexic patients. Additional slices are shown to demonstrate that both patients showed small regions that were selectively responsive to

words more dorsally in the right hemisphere. The black outlines show regions that responded more to words than false font strings

(voxel-wise P50.05) and more to words than fixation (voxel-wise P50.0001). The red outlines show regions in the two patients that

VBM showed to be atrophic (voxel-wise P5 0.005, minimum cluster extent = 1500 mm3). F = female; M = male.
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to false font strings. In contrast, neither of the two patients

showed any evidence for a selectivity gradient or for word-specific

activation of the VWFA. These findings support our hypothesis

that the visual word form system would be functionally abnormal

in progressive alexia.

Patient J showed normal bilateral occipito-temporal responses

for words relative to rest and false fonts relative to rest, whereas

Patient B showed reduced activation even in these basic contrasts.

This may be related to the degree of occipito-temporal atrophy,

which was much greater in Patient B. Because Patient B showed

abnormal activity even in basic contrasts in regions posterior to the

VWFA, it seems clear that early processing stages in the visual

word form system were implicated in his reading deficit, consistent

with the fact that his deficits extended even to the single letter

level. Patient J, in contrast, did not lack activation of regions pos-

terior to the VWFA. Rather, he lacked any emergence of select-

ivity for words. Whereas the dysfunction of his visual word form

system was more subtle than that of Patient B, regions posterior to

the VWFA may likewise be implicated as Patient J also had deficits

at the single letter level. Although our data suggest that functional

abnormalities arise posterior to the VWFA in both patients, it

should be emphasized that neither patient had severe visual per-

ceptual deficits, and object recognition was intact. Both patients’

deficits were quite specific for reading.

A crucial methodological aspect of our study was the optimiza-

tion of a paradigm that would reliably activate the VWFA in every

individual normal control subject. Otherwise, failure to detect the

VWFA in the patients with progressive alexia might simply reflect

a lack of statistical power. We used a block design with false font

control stimuli, rapid presentation, and an attentionally demanding

task in order to maximize power, minimize visual confounds, and

minimize higher level semantic processing. This design was quite

similar to that used by Vinckier et al. (2007). Our pilot testing

showed that with slower presentation rates, there was consider-

able interindividual variability presumably related to higher level

processing, and words did not necessarily activate the VWFA

more than visually matched non-word stimuli such as false fonts

or consonant strings. Others have made similar observations

(Tagamets et al., 2000; Cohen et al., 2003). Our optimized para-

digm was successful in identifying the VWFA and mapping the

posterior-to-anterior gradient of selectivity for words in all 10 of

our healthy control participants. Because of this consistency, we

can be confident that the abnormal functionality of the visual

word form system in the two patients is unlikely to reflect

normal individual variability. A direct comparison between the

two patients and the 10 control subjects provided further support

for this conclusion.

Previous functional imaging studies of the VWFA and earlier

visual processing areas in patients have shown that the VWFA

does not show typical activation for word reading or selectivity

for words when it is damaged or disconnected from its inputs

[Cohen et al., 2003, 2004 (Patient F), Henry et al., 2005;

Gaillard et al., 2006; Epelbaum et al., 2008]. Sometimes rather

precise disconnections have been demonstrated. For instance,

damage to the white matter in the splenium of the corpus callo-

sum or its continuation in the forceps major disconnects the VWFA

from right hemisphere visual processing areas, resulting in

hemialexia in the left visual field; in these patients, the VWFA is

not activated by words presented in the left visual field [Cohen

et al., 2000, 2003 (Patient D)]. Damage to earlier visual process-

ing regions in the left hemisphere does not result in alexia if right

hemisphere regions are intact and interhemispheric connectivity is

preserved; in these cases, the VWFA is activated normally [Cohen

et al., 2003 (Patient M)]. The importance of the VWFA at the

anterior endpoint of the visual word form processing stream has

been highlighted in particular by two studies. Ino et al. (2008)

reported a patient who became alexic after haemorrhage in the

vicinity of the VFWA. The patient lacked functional activity in the

VWFA, but 6 weeks later his reading had recovered, and the

VWFA showed functional activity for reading again. Tsapkini

et al. (2011) showed that VWFA-like activation was displaced

posteriorly in a patient with a left fusiform resection, resulting in

a limited reading deficit. Our two cases differ from all of these

previous cases of acquired alexia in that the VWFA was neither

completely destroyed nor deafferented by a frank structural lesion.

However, our results converge with findings of abnormal function-

ality in the visual word form system in children and adults with

developmental dyslexia, in whom there may be structural abnorm-

alities but there are no frank lesions (Salmelin et al., 1996;

Rumsey et al., 1997; McCrory et al., 2005; van der Mark et al.,

2009, 2011).

Our two patients with progressive alexia met criteria for differ-

ent clinical syndromes. Patient J likely represents an early case of

PCA, whereas Patient B met diagnostic criteria for logopenic

primary progressive aphasia. Here we consider our findings for

each patient in the context of their broader clinical syndrome.

Patient J met clinical criteria for PCA, in that his presenting dif-

ficulty was the insideous onset of a primary visual dysfunction

(Tang-Wai et al., 2004). It is not uncommon that the first visual

dysfunction in PCA is progressive peripheral alexia (Benson et al.,

1988; McMonagle et al., 2006; Mendez et al., 2007). Patient

J did not have any other significant visual or visuospatial deficits,

although he made some errors on the number location subtest

from the Visual Object and Space Perception battery, which

may be a harbinger of the emergence of a more generalized

visual impairment.

Some authors have proposed that distinct variants of PCA dif-

ferentially involve dorsal and ventral visual streams (Caselli, 1995;

Mackenzie Ross et al., 1996; Beversdorf and Heilman, 1998;

Mendez and Cherrier, 1998; Migliaccio et al., 2012) or that

there is a continuum between dorsal and ventral forms

(Lehmann et al., 2011), whereas others have argued that the

dorsal stream is generally more affected than the ventral stream

(McMonagle et al., 2006). Mendez and Cherrier (1998) reported

two cases of PCA in which alexia with letter-by-letter reading was

the first symptom, but both patients eventually developed a more

general ventral simultanagnosia and eventually dorsal simultanag-

nosia. In contrast, Mendez (2001) reported another patient with

PCA with deficits primarily affecting visual localization and visuo-

spatial integration, in whom reading was largely preserved. PET

showed bilateral occipito-parietal hypometabolism. In another pa-

tient with occipito-parietal degeneration, Vinckier et al. (2006)

showed that reading was preserved, except in situations that

make particular demands on visuospatial processing, such as
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rotated words, or words with spaces between the letters. Taken

together, these cases suggest that peripheral alexia with

letter-by-letter reading in PCA is related to dysfunction of ventral

rather than dorsal visual regions (Mendez and Cherrier, 1998;

Mendez, 2001).

Our findings with Patient J are consistent with this view. The

functional abnormalities we observed were ventral, as was the

mild structural atrophy, consistent with progressive alexia being

the only prominent symptom in this case. We concur with previ-

ous researchers that there are multiple variants of PCA depending

on the particular regions affected (Caselli, 1995; Mackenzie Ross

et al., 1996; Lehmann et al., 2011; Migliaccio et al., 2012), and

that cases in which alexia is the first and most prominent symptom

reflect a ventral variant (Beversdorf and Heilman, 1998; Mendez

and Cherrier, 1998).

Patient B met clinical criteria for logopenic primary progressive

aphasia. He showed progressive alexia with a prominent peripheral

component, as evidenced by letter-by-letter reading, as well as a

central spelling deficit, and significant aphasia. Although logopenic

primary progressive aphasia is associated with reading deficits

(Brambati et al., 2009; Henry et al., 2012), such deficits are typically

central in nature; to our knowledge, no previous cases have been

reported with significant peripheral deficits as well. Patient B’s

unique pattern of impairment can be explained in terms of his atro-

phy, which encompassed both posterior perisylvian cortex,

accounting for spoken language deficits and possibly contributing

to his spelling impairment, as well as occipito-temporal regions, ac-

counting for peripheral alexia. Patient B’s atrophy was also strongly

left-lateralized, which is consistent with his relatively spared visuo-

spatial functions. It has been suggested that PCA and logopenic pri-

mary progressive aphasia have much in common as atypical

Alzheimer’s variants, and may differ primarily in relative lateralization

of posterior atrophy (Migliaccio et al., 2009).

In conclusion, we have shown that the visual word form system

was functionally abnormal in two cases of progressive alexia,

despite the fact that the VWFA was neither completely destroyed

nor were there any frank lesions that would disconnect it from its

afferents. This functional abnormality was accompanied by sub-

stantial atrophy in only one of the two cases, indicating that

defective activation of the visual word form system resulting in

profound alexia may precede significant atrophy.
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